Ovarian Cancer
Multivariate Feature Selection and Autoencoder Embeddings of Ovarian Cancer Clinical and Genetic Data
Bote-Curiel, Luis, Ruiz-Llorente, Sergio, Muñoz-Romero, Sergio, Yagüe-Fernández, Mónica, Barquín, Arantzazu, García-Donas, Jesús, Rojo-Álvarez, José Luis
This study explores a data-driven approach to discovering novel clinical and genetic markers in ovarian cancer (OC). Two main analyses were performed: (1) a nonlinear examination of an OC dataset using autoencoders, which compress data into a 3-dimensional latent space to detect potential intrinsic separability between platinum-sensitive and platinum-resistant groups; and (2) an adaptation of the informative variable identifier (IVI) to determine which features (clinical or genetic) are most relevant to disease progression. In the autoencoder analysis, a clearer pattern emerged when using clinical features and the combination of clinical and genetic data, indicating that disease progression groups can be distinguished more effectively after supervised fine tuning. For genetic data alone, this separability was less apparent but became more pronounced with a supervised approach. Using the IVI-based feature selection, key clinical variables (such as type of surgery and neoadjuvant chemotherapy) and certain gene mutations showed strong relevance, along with low-risk genetic factors. These findings highlight the strength of combining machine learning tools (autoencoders) with feature selection methods (IVI) to gain insights into ovarian cancer progression. They also underscore the potential for identifying new biomarkers that integrate clinical and genomic indicators, ultimately contributing to improved patient stratification and personalized treatment strategies.
AI detects ovarian cancer better than human experts in new study
For the nearly 20,000 women in the U.S. who receive an ovarian cancer diagnosis each year, artificial intelligence is emerging as a potentially life-saving tool. In a new study led by researchers at Karolinska Institutet in Sweden, AI models did a better job of detecting ovarian cancer than human doctors. The research, which was published in Nature Medicine, tested an AI model's ability to distinguish between benign and malignant lesions on the ovaries, according to a press release. The AI model was trained on more than 17,000 ultrasound images from 3,652 patients across 20 hospitals in eight countries, the release stated. "High-quality diagnostics can become more accessible, particularly in regions with limited access to experienced examiners," said a study author.
Histopathology Foundation Models Enable Accurate Ovarian Cancer Subtype Classification
Breen, Jack, Allen, Katie, Zucker, Kieran, Godson, Lucy, Orsi, Nicolas M., Ravikumar, Nishant
Large pretrained transformers are increasingly being developed as generalised foundation models which can underpin powerful task-specific artificial intelligence models. Histopathology foundation models show promise across many tasks, but analyses have been limited by arbitrary hyperparameters that were not tuned to the specific task/dataset. We report the most rigorous single-task validation conducted to date of a histopathology foundation model, and the first performed in ovarian cancer subtyping. Attention-based multiple instance learning classifiers were compared using vision transformer and ResNet features generated through varied preprocessing and pretraining procedures. The training set consisted of 1864 whole slide images from 434 ovarian carcinoma cases at Leeds Hospitals. Five-class classification performance was evaluated through five-fold cross-validation, and these cross-validation models were ensembled for evaluation on a hold-out test set and an external set from the Transcanadian study. Reporting followed the TRIPOD+AI checklist. The vision transformer-based histopathology foundation model, UNI, performed best in every evaluation, with five-class balanced accuracies of 88% and 93% in hold-out internal and external testing, compared to the best ResNet model scores of 68% and 81%, respectively. Normalisations and augmentations aided the generalisability of ResNet-based models, but these still did not match the performance of UNI, which gave the best external performance in any ovarian cancer subtyping study to date. Histopathology foundation models offer a clear benefit to subtyping, improving classification performance to a degree where clinical utility is tangible, albeit with an increased computational burden. Such models could provide a second opinion in challenging cases and may improve the accuracy, objectivity, and efficiency of pathological diagnoses overall.
Towards AI-Based Precision Oncology: A Machine Learning Framework for Personalized Counterfactual Treatment Suggestions based on Multi-Omics Data
Schürch, Manuel, Boos, Laura, Heinzelmann-Schwarz, Viola, Gut, Gabriele, Krauthammer, Michael, Wicki, Andreas, Consortium, Tumor Profiler
AI-driven precision oncology has the transformative potential to reshape cancer treatment by leveraging the power of AI models to analyze the interaction between complex patient characteristics and their corresponding treatment outcomes. New technological platforms have facilitated the timely acquisition of multimodal data on tumor biology at an unprecedented resolution, such as single-cell multi-omics data, making this quality and quantity of data available for data-driven improved clinical decision-making. In this work, we propose a modular machine learning framework designed for personalized counterfactual cancer treatment suggestions based on an ensemble of machine learning experts trained on diverse multi-omics technologies. These specialized counterfactual experts per technology are consistently aggregated into a more powerful expert with superior performance and can provide both confidence and an explanation of its decision. The framework is tailored to address critical challenges inherent in data-driven cancer research, including the high-dimensional nature of the data, and the presence of treatment assignment bias in the retrospective observational data. The framework is showcased through comprehensive demonstrations using data from in-vitro and in-vivo treatment responses from a cohort of patients with ovarian cancer. Our method aims to empower clinicians with a reality-centric decision-support tool including probabilistic treatment suggestions with calibrated confidence and personalized explanations for tailoring treatment strategies to multi-omics characteristics of individual cancer patients.
An Explainable Machine Learning Framework for the Accurate Diagnosis of Ovarian Cancer
Newaz, Asif, Taharat, Abdullah, Islam, Md Sakibul, Akanda, A. G. M. Fuad Hasan
Ovarian cancer (OC) is one of the most prevalent types of cancer in women. Early and accurate diagnosis is crucial for the survival of the patients. However, the majority of women are diagnosed in advanced stages due to the lack of effective biomarkers and accurate screening tools. While previous studies sought a common biomarker, our study suggests different biomarkers for the premenopausal and postmenopausal populations. This can provide a new perspective in the search for novel predictors for the effective diagnosis of OC. Lack of explainability is one major limitation of current AI systems. The stochastic nature of the ML algorithms raises concerns about the reliability of the system as it is difficult to interpret the reasons behind the decisions. To increase the trustworthiness and accountability of the diagnostic system as well as to provide transparency and explanations behind the predictions, explainable AI has been incorporated into the ML framework. SHAP is employed to quantify the contributions of the selected biomarkers and determine the most discriminative features. A hybrid decision support system has been established that can eliminate the bottlenecks caused by the black-box nature of the ML algorithms providing a safe and trustworthy AI tool. The diagnostic accuracy obtained from the proposed system outperforms the existing methods as well as the state-of-the-art ROMA algorithm by a substantial margin which signifies its potential to be an effective tool in the differential diagnosis of OC.
Ovarian Cancer Data Analysis using Deep Learning: A Systematic Review from the Perspectives of Key Features of Data Analysis and AI Assurance
Hira, Muta Tah, Razzaque, Mohammad A., Sarker, Mosharraf
Background and objectives: By extracting this information, Machine or Deep Learning (ML/DL)-based autonomous data analysis tools can assist clinicians and cancer researchers in discovering patterns and relationships from complex data sets. Many DL-based analyses on ovarian cancer (OC) data have recently been published. These analyses are highly diverse in various aspects of cancer (e.g., subdomain(s) and cancer type they address) and data analysis features. However, a comprehensive understanding of these analyses in terms of these features and AI assurance (AIA) is currently lacking. This systematic review aims to fill this gap by examining the existing literature and identifying important aspects of OC data analysis using DL, explicitly focusing on the key features and AI assurance perspectives. Methods: The PRISMA framework was used to conduct comprehensive searches in three journal databases. Only studies published between 2015 and 2023 in peer-reviewed journals were included in the analysis. Results: In the review, a total of 96 DL-driven analyses were examined. The findings reveal several important insights regarding DL-driven ovarian cancer data analysis: - Most studies 71% (68 out of 96) focused on detection and diagnosis, while no study addressed the prediction and prevention of OC. - The analyses were predominantly based on samples from a non-diverse population (75% (72/96 studies)), limited to a geographic location or country. - Only a small proportion of studies (only 33% (32/96)) performed integrated analyses, most of which used homogeneous data (clinical or omics). - Notably, a mere 8.3% (8/96) of the studies validated their models using external and diverse data sets, highlighting the need for enhanced model validation, and - The inclusion of AIA in cancer data analysis is in a very early stage; only 2.1% (2/96) explicitly addressed AIA through explainability.
Predicting Ovarian Cancer Treatment Response in Histopathology using Hierarchical Vision Transformers and Multiple Instance Learning
Breen, Jack, Allen, Katie, Zucker, Kieran, Hall, Geoff, Ravikumar, Nishant, Orsi, Nicolas M.
For many patients, current ovarian cancer treatments offer limited clinical benefit. For some therapies, it is not possible to predict patients' responses, potentially exposing them to the adverse effects of treatment without any therapeutic benefit. As part of the automated prediction of treatment effectiveness in ovarian cancer using histopathological images (ATEC23) challenge, we evaluated the effectiveness of deep learning to predict whether a course of treatment including the antiangiogenic drug bevacizumab could contribute to remission or prevent disease progression for at least 6 months in a set of 282 histopathology whole slide images (WSIs) from 78 ovarian cancer patients. Our approach used a pretrained Hierarchical Image Pyramid Transformer (HIPT) to extract region-level features and an attention-based multiple instance learning (ABMIL) model to aggregate features and classify whole slides. The optimal HIPT-ABMIL model had an internal balanced accuracy of 60.2% +- 2.9% and an AUC of 0.646 +- 0.033. Histopathology-specific model pretraining was found to be beneficial to classification performance, though hierarchical transformers were not, with a ResNet feature extractor achieving similar performance. Due to the dataset being small and highly heterogeneous, performance was variable across 5-fold cross-validation folds, and there were some extreme differences between validation and test set performance within folds. The model did not generalise well to tissue microarrays, with accuracy worse than random chance. It is not yet clear whether ovarian cancer WSIs contain information that can be used to accurately predict treatment response, with further validation using larger, higher-quality datasets required.
Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic Review
Breen, Jack, Allen, Katie, Zucker, Kieran, Adusumilli, Pratik, Scarsbrook, Andy, Hall, Geoff, Orsi, Nicolas M., Ravikumar, Nishant
Purpose - To characterise and assess the quality of published research evaluating artificial intelligence (AI) methods for ovarian cancer diagnosis or prognosis using histopathology data. Methods - A search of PubMed, Scopus, Web of Science, CENTRAL, and WHO-ICTRP was conducted up to 19/05/2023. The inclusion criteria required that research evaluated AI on histopathology images for diagnostic or prognostic inferences in ovarian cancer. The risk of bias was assessed using PROBAST. Information about each model of interest was tabulated and summary statistics were reported. PRISMA 2020 reporting guidelines were followed. Results - 1573 records were identified, of which 45 were eligible for inclusion. There were 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 models with other diagnostically relevant outcomes. Models were developed using 1-1375 slides from 1-776 ovarian cancer patients. Model outcomes included treatment response (11/80), malignancy status (10/80), stain quantity (9/80), and histological subtype (7/80). All models were found to be at high or unclear risk of bias overall, with most research having a high risk of bias in the analysis and a lack of clarity regarding participants and predictors in the study. Research frequently suffered from insufficient reporting and limited validation using small sample sizes. Conclusion - Limited research has been conducted on the application of AI to histopathology images for diagnostic or prognostic purposes in ovarian cancer, and none of the associated models have been demonstrated to be ready for real-world implementation. Key aspects to help ensure clinical translation include more transparent and comprehensive reporting of data provenance and modelling approaches, as well as improved quantitative performance evaluation using cross-validation and external validations.
Filipino-founded firm developing test to detect ovarian cancer with a drop of blood
MANILA, Philippines – Filipino-founded biotech firm InterVenn Biosciences on Friday, July 22, launched its Philippine office. Though the company is headquartered in San Francisco, California, the team that developed and maintains the proprietary AI technology that speeds up certain research processes for the company is made up mostly of Filipinos residing in the Philippines, including one of its founders, AI and blockchain expert Aldo Carrascoso. The company has about 150 Filipinos working in the Philippines, majority of whom are software developers, and who make up half of the company. Through the help of the company's advanced AI platform, the company is able to help its global groups of researchers and scientists significantly reduce the time it takes for some processes such as analysis of samples from months to seconds. It's through this meaningful application of AI that the firm has been able to make strides in the field since its founding in 2017, as well as strides in funding.